7 research outputs found

    THE EFFECTS OF CURRENT BLOCKAGE ON OFFSHORE STRUCTURES

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Feasibility study on manganese nodules recovery in the Clarion-Clipperton Zone

    No full text
    The sea occupies three quarters of the area on the earth and provides various kinds of resources to mankind in the form of minerals, food, medicines and even energy. “Seabed exploitation” specifically deals with recovery of the resources that are found on the seabed, in the form of solids, liquids and gasses (methane hydrates, oil and natural gas). The resources are abundant; nevertheless the recovery process from the seabed, poses various challenges to mankind. This study starts with a review on three types of resources: polymetallic manganese nodules, polymetallic manganese crusts and massive sulphides deposits. Each of them are rich in minerals, such as manganese, cobalt, nickel, copper and some rare earth elements. They are found at many locations in the deep seas and are potentially a big source of minerals. No commercial seabed mining activity has been accomplished to date due to the great complexities in recovery. This book describes the various challenges associated with a potential underwater mineral recovery operation, reviews and analyses the existing recovery techniques, and provides an innovative engineering system. It further identifies the associated risks and a suitable business model.Chapter 1 presents a brief background about the past and present industrial trends of seabed mining. A description of the sea, seabed and the three types of seabed mineral resources are also included. A section on motivations for deep sea mining follows which also compares the latter with terrestrial mining.Chapter 2 deals with the decision making process, including a market analysis, for selecting manganese nodules as the resource of interest. This is followed by a case study specific to the location of interest: West COMRA in the Clarion-Clipperton Zone. Specific site location is determined in order to estimate commercial risk, environmental impact assessment and logistic challenge.Chapter 3 lists the existing techniques for nodule recovery operation. The study identifies the main components of a nodules recovery system, and organizes them into: collector, propulsion and vertical transport systems.Chapter 4 discusses various challenges posed by manganese nodules recovery, in terms of the engineering and environment. The geo-political and legal-social issues have also been considered. This chapter plays an important role in defining the proposed engineering system, as addressing the identified challenges will better shape the proposed solution.Chapter 5 proposes an engineering system, by considering the key components in greater details. An innovative component, the black box is introduced, which is intended to be an environmentally-friendly solution for manganese nodules recovery. Other auxiliary components, such as the mother ship and metallurgical processing, are briefly included. A brief power supply analysis is also provided.Chapter 6 assesses the associated risks, which are divided into sections namely commercial viability, logistic challenges, environmental impact assessment and safety assessment. The feasibility of the proposed solution is also dealt with.Chapter 7 provides a business model for the proposed engineering system. Potential customers are identified, value proposition is determined, costumer relation is also suggested. Public awareness is then discussed and finally a SWOT analysis is presented. This business model serves as an important bridge to reach both industry and research institutes.Finally, Chapter 8 provides some conclusions and recommendation for future work

    Extreme motion and response statistics for survival of the three-float wave energy converter M4 in intermediate water depth

    Get PDF
    This paper presents both linear and nonlinear analysis of extreme responses for a multibody wave energy converter (WEC) in severe sea-states. The WEC known as M4 consists of three cylindrical floats with diameters and draft which increase from bow to stern with the larger mid and stern floats having rounded bases so that the overall system has negligible drag effects. The bow and mid float are rigidly connected by a beam and the stern float is connected by a beam to a hinge above the mid float where the rotational relative motion would be damped to absorb power in operational conditions. A range of focussed wave groups representing extreme waves were tested on a scale model without hinge damping, also representing a more general system of interconnected cylindrical floats with multi-mode forcing. Importantly, the analysis reveals predominantly linear response structure in hinge angle and weakly nonlinear response for beam bending moment, while effects due to drift forces, expected to be predominantly second order, are not accounted for. There are also complex and violent free-surface effects on the model during the excitation period driven by the main wave group, which generally reduce the overall motion response. Once the main group has moved away, the decaying response in the free-vibration phase decays at a rate very close to that predicted by simple linear radiation damping. Two types of nonlinear harmonic motion are demonstrated. During the free-vibration phase, there are only double and triple frequency Stokes harmonics of the linear motion, captured using a frequency doubling and tripling model. In contrast, during the excitation phase, these harmonics show much more complex behaviour associated with nonlinear fluid loading. Although bound harmonics are visible in the system response, the overall response is remarkably linear until temporary submergence of the central float (‘dunking’) occurs. This provides a strong stabilising effect for angular amplitudes greater than ~ 30◦ and can be treated as a temporary loss of part of the driving wave as long as submergence continues. With an experimentally and numerically derived response amplitude operator (RAO), we perform statistical analysis of extreme response for the hinge angle based on wave data at Orkney, well known for its severe wave climate, using the NORA10 wave hindcast. For storms with spectral peak wave periods longer than the RAO peak period, the response is controlled by the steepness of the sea state rather than the wave height. Thus, the system responds very similarly under the most extreme sea states, providing an upper bound for the most probable maximum response, which is reduced significantly in directionally spread waves. The methodology presented here is relevant to other single and multi-body systems including WECs. We also demonstrate a general and potentially important reciprocity result for linear body motion in random seas: the averaged wave history given an extreme system response and the average response history given an extreme wave match in time, with time reversed for one of the signals. This relationship will provide an efficient and robust way of defining a ‘designer wave’, for both experimental testing and computationally intensive CFD, for a wide range of wave-structure interaction problems

    A proposed concept design solution towards full-scale manganese nodule recovery

    No full text
    This paper, a product of an intensive eight-week Lloyd’s Register Educational Trust (LRET) Collegium held during July – September 2012 in Southampton, UK, presents an innovative engineering system concept design for manganese nodule recovery. Issues associated with environmental impacts, such as insufficient or lack of transparent impact studies of any potential full-scale seabed mining, are identified as the key obstacles which could lead to public protest, thus prevent the mining project from taking place. Hence, the proposed system introduces an environmentally friendly solution with the innovative concept of a black box, which performs in-situ nodule-sediment separation and waste discharge, and allows recirculation of waste water. The use of a modularised mining system with small, active hydraulic, crawler-type collectors is proposed to minimise environmental footprint and increase system redundancy. This yields a comparable estimated sediment-to-dry nodule ratio with previous studies in sediment plume impact assessment. The proposed system is a big leap towards a more environmentally friendly solution for achieving (the first) full-scale manganese nodule recovery. Together with the intended small production scale of 0.5 millions dry nodules per year, the proposed system can also be considered as a full-scale experiment or field measurement: a platform for full-scale research concurrently, particularly in the area of environmental impacts. The proposed system, intended to spur more interest in environmental impact studies and to be more transparent to the public, could benefit both industry and research institutes, for the benefit of everybody

    Combining Reduced-Order Stick Model with Full-Order Finite Element Model for Efficient Analysis of Self-Elevating Units

    No full text
    Reduced-order stick models are frequently employed to obtain dynamic amplification factors of self-elevating units (SEU), while the full-order finite element (FE) models are used for quasi-static analyses. This paper develops an efficient framework to create structural digital twins for SEUs by combining both stick models and full-order FE models. A stick model and a detailed FE model of an in-house developed generic SEU are established, respectively, following the standard industry guideline. Dynamic analyses are performed for the stick model based on the modal superposition method. Assuming that the stick model contains the key dynamic characteristics of the full-order FE model, the modal participation factors are multiplied by the corresponding mode shapes of the full FE model to derive the global dynamic responses of the entire SEU. The derived nodal displacements are imposed on the full-order model to obtain the member stresses. The global responses and member stresses are benchmarked with the results from a direct full-order dynamic FE analysis for various environmental conditions. The presented framework is found to significantly increase the efficiency of the simulation while retaining a similar accuracy, and it forms a critical step for the ongoing development of digital twins of fixed offshore structures
    corecore